Fourier-Feynman transform and first variation of cylinder type functions over Wiener paths in abstract Wiener space
نویسندگان
چکیده
منابع مشابه
A Change of Scale Formula for Wiener Integrals of Cylinder Functions on the Abstract Wiener Space Ii
We show that for certain bounded cylinder functions of the form F(x) = μ̂((h1,x)∼, . . . ,(hn,x)∼), x ∈ B, where μ̂ :Rn → C is the Fourier-transform of the complexvalued Borel measure μ on (Rn), the Borel σ -algebra of Rn with ‖μ‖ < ∞, the analytic Feynman integral of F exists, although the analytic Feynman integral, limz→−iq Iaw(F ;z)= limz→−iq(z/2π) ∫ Rn f( →u)exp{−(z/2)| →u|2}d →u, do not alwa...
متن کاملSequential Fourier-feynman Transform, Convolution and First Variation
Cameron and Storvick introduced the concept of a sequential Fourier-Feynman transform and established the existence of this transform for functionals in a Banach algebra Ŝ of bounded functionals on classical Wiener space. In this paper we investigate various relationships between the sequential Fourier-Feynman transform and the convolution product for functionals which need not be bounded or co...
متن کاملReal Paley-wiener Theorems for the Inverse Fourier Transform on a Riemannian Symmetric Space
The classical Fourier transform Fcl is an isomorphism of the Schwartz space S(Rk) onto itself. The space C∞ c (Rk) of smooth functions with compact support is dense in S(Rk), and the classical Paley-Wiener theorem characterises the image of C∞ c (R k) under Fcl as rapidly decreasing functions having an holomorphic extension to Ck of exponential type. Since Rk is self-dual, the same theorem also...
متن کاملThe Gaussian Radon Transform in Classical Wiener Space*
We study the Gaussian Radon transform in the classical Wiener space of Brownian motion. We determine explicit formulas for transforms of Brownian functionals specified by stochastic integrals. A Fock space decomposition is also established for Gaussian measure conditioned to closed affine subspaces in Hilbert spaces.
متن کاملIntegral transforms, convolution products, and first variations
We establish the various relationships that exist among the integral transform Ᏺ α,β F , the convolution product (F * G) α , and the first variation δF for a class of functionals defined on K[0,T ], the space of complex-valued continuous functions on [0,T ] which vanish at zero. 1. Introduction and definitions. In a unifying paper [10], Lee defined an integral transform Ᏺ α,β of analytic functi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematical Forum
سال: 2006
ISSN: 1314-7536
DOI: 10.12988/imf.2006.06055